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e study the convergence of a finite difference scheme for the Cauchy

.

problem for ghé porous medium equation¢ u_ = (" ) L, m> 1,

et

- The scheme exhibits the following two features. The first is that it

employs a discretization of the knowg_;nterface condition for the propagation
of the support of the solution. {be~éeue‘ge:ere;e approximate interfaces as
well as an approximate solution.
The second feature is that it contains a vanishing viscosity term. This
* term permits an estimate of the form l(um 1) I1 R <c/t . L
;’71;77 ' We prove that both the approximate solution and the aoproximate
interfaces converge to the correct ones.
Finally error bounds for both solution and free boundaries are proved in

terms of the mesh parameters.
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SIGNIFICANCE AND EXPLANATION

\.

The porous medium equation represents a model for the flow of a gas in a
medium with constant porosity. The most interesting feature of such a
physical phenomenon is that if initially the gas is concentrated in a compact
set, then for later times even though the support expands, it remains
compact. The boundary of the region where the gas is concentrated is the free
boundary of the problem. —

In this paper we construct numerically the solution of such a problem and
also the free boundary.

We also supply error bounds in terms of tﬁe mesh parameters, both for the

solution and the interfaces in the sup norm.

Accession For

[ NTIS GRA&I
DTIC TAB
U:announced O
Justification. |
B

_Disiribution/
Loo0ll2bility Codes
Avo Ll Clnd/ox;

s Y Cpazial
i

AL L

C

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

T

_atatax




.......

AN INTERFACE TRACKING ALGORTTHM
FOR THE POROUS MEDIUM EQUA™ION

E. DiBenedetto* and D. C. Hoff*

1. Introduction
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In this paper we derive and analyze a finite difference
scheme for computing both the solution and the interfaces
for the porous medium equation in one space dimension. We
demonstrate that the approximate solutions and the approxi-
mate interface curves converge to the correct ones, and
obtain L~ bounds for the error in terms of the mesh
parameter.

Consider the 1laminar flow of a polytropic fluid of
density (x,t) - u(x,t) , in a porous medium which is
assumed to occupy the whole space, and suppose that at time
t = 0 the fluid is contained in the slab CK(O) € x < Cr(O) .

The phenomenon can be modeled by

(1.1) up = (@, (X,t) €Sy =R x (0,T]

T =
0 < T < = ,

WPy

(1.2) u(+,0) = uo(-) in R ,

E of o

where m > 1 1is a given constant, and ug is a given non-
negative function such that uO(x) >0 if x &€ (Cz(O),Cr(O))

and uO(x) = () elsewhere. We assume u, is continuous in R .

* Indiana University Bloomington, Department of Mathematics, Swain Hall East,
Bloomington, Indiana 47405.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
Partég%éy supported by the National Science Foundation Grant No. 48-296-80 and
MCS- 293.
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Since the problem is degenerate, (1.1)-(1.2) is inter-

preted in a weak sense and the solution possesses a modest

degreec of regularity. Preciscly (x,t) - u(x,t) 1is said

to be a weak solution of (1.1)-(1.2) if
. m 2
wecesy) ;o (M, € LSy
] and
N (1.3) S oulx,*)e(x,*)dx|S +
. t .
+ [ [ [-ue¢, + (u)_¢_Jldxdt = 0
t XX
t 0 R

for all ¢ satisfying

6 & Hl(ST) NL"(S;)  and

(1.4) x > ¢(x,t) 1is compactly supported in R

uniformly in t ,

and for all intervals [to,t] < [0,T]
The pressure v in the fluid is connected to the

density by

(1.5) V. =u

up to some multiplicative constant, and it satisfies

%
- _ m 2 .
E! (1.6) Ve = mvv v | (vx) R in ST
: _ . _ .m-1
(107) Vo(.) = V( ’0) - u() .

P

——aid
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The Cauchy problem (1.6)-(1.7) is also interpreted

in the weak sense

vecsy) 5 vee Lisp
and
(1.8) [ v(x,*)0(x,*) T dx +
R 0
. } ; m(m-2) 2 .
['V¢t + mvvx¢x + m-1_ (Vx) ¢]dth =0
t R
0

for all ¢ satisfying (1.4), and all intervals [to,t]c:
[o,T] .

Existence and uniqueness of weak solutions of (1.1)-
(1.2) was first proved by Oleinik-Kalashnikov and Choui-Lin
in (15], and the equivalence of (1.3) and (1.8) is due to
Aronson [2].

A consequence of the degeneracy is that wu(-,t) and
v(*,t) are supported in a finite interval [cz(t),cr(t)].

The curves (t,cl(t)) . (t,;r(t)) , which we refer to
as the left and right interfaces are Lipschitz continuous
and monotone decreasing and increasing respectively (see
[3]). The interface curves and the pressure Vv are con-

nected by the Stefan-like conditions (see [3,11])

L TP - 2 e PO -2 e . . -
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: lim v_(x,t) = - 22 z'(¢t)
t7'§r X m T
(1.9)
lim  v_(x,t) = - ™1 ey
ty Ct(t) X m L

It should be noted that conditions (1.9) are not part
of the original problem, but rather are known to be satis-
fied by the unique solution of (1.1)-(1.2).

Nevertheless our algorithm will be based upon suitable
discretization of both (1.6) and (1,9).

We now give a detailed description of our algorithm.

Let Ax and At denote increments in x and t ,

and let

n xk=kAx R k&e€z ; t_ = nat , n €éNU{0} .

The approximations to v(xk,tn) » gp(t)) and ¢ (t))

will be denoted by vi R ;2 R cn

r respectively.

Actually we shall describe the computations only for
the right hand interface; the computations near CE are
completely analogous. We therefore suppress the subscript

n

and denote c? by ¢ .

To start the scheme let Vg = Vo(xk) and CO = ¢(0) .

Next define

K(0) = max {k : x,,, <¢

and

. P P Y . -
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_ .0
SO - C - XK(O) .

Then in analogy with (1.9) we compute ;1 from the equation
0
v
rl - CO L, K(0) At .
? m-l SO
1 0
Observe that SH 2 Ax and ¢ 2 ¢ .

n

n+l P Cn and Vj

Now given ¢ for j € z , we proceed

as follows, First define

K(n+1) = max {k : x,; < Cg}
(1.10)
K(n+1) = min {k : Xp_1 > CE} ,
tn*l . . / .
tn . . . . L]
XK (n+1) n g1

Fig. 1.

Then for K(n+l) € k € K(n+1) compute v§+1 from

the finite difference equation




.........
--------------

n+l _n n n..n n n
Vi V% o L ke 1V k-l L om Vke1 VK-l L2
(1.11) 5 = m(vk + €) + ( AR ) ,

(Ax)z m-1

where € > 0 will be chosen later. Observe that we do not 1

enforce the difference equation across the interface.

Next let

ﬁ - n+l
'_:. (1.12) Sn+1 C - XK(n+1) »
ﬂ and observe that
-
X
!! (1.13) bx € s .4
A n+l +1
- Then for XK (n+1) <Sx. <t , compute vﬂ from the

linear interpolation
5 ] Cn+1-xk )
¥ + n+
- (1.14) vttt . Xy .
i k Sn+1 K(n+1)
5 Finally set vl =0 for x, > cn+1 and compute cn+2 from
-, k k

Vn+1
(1.15) Cn+2 - r’n+1 s M K(n+1) At
) m-1 Sn+1

We shall prove that V; 2 0 for all n and k so that
by (1.15) cn+2 2 cn+1 . Thus the support of the approxi- )
mate solution increases monotonically in t .

In addition, the fact that Sh 2 Ax 1insures that
numerical instabilities are avoided in the computations (1.14)

and (1.15).

------------
...............
-------------
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Iatroducing the notations

At
B = H Av, = v - 2V, + V ,
(Ax)z k k+1 k k-1

we can rewrite the difference scheme (1.11) in the form

(1.16) VI = R e me(v] + e)av) + 2B ( Vﬁ*lévﬁ‘l )2
We shall assume throughout that

[Al] 0 € vo(x) €M , ¥x € R 3

[A2] Vg (X)=vo ()| < vg [x-y] ¥x,y ER 3

[A3] e 1is of the order of Ax and

m+2 .
e 2> 9 T YOAX ;

[A4] 2mB [M + ¢ + E¥T Yoixl €1,

where M aad Yo are given positive constants. Since
€ = 0(Ax) , condition [A4] on B 1is seen to be a slight
strengthening of the usual parabolic stability condition.

We let h denote the pair (Ax,At) , and we construct
approximate solutions vh and approximate interface curves

52 and c? by piecewise linear interpolation, Our results

.|




may be summarized as follows

[1] Wi, o < cmeoP

T
[T1] Vi— v in L%sp) , for all qe [1,%)
[rr1j 1GEghe) - (goz )l (o) < CD(a0P/2

where p 1is defined in terms of m in Theorem 4.1 below.
Further comments will be made in Section 6 about these rates
of convergence, where we present and discuss the results

of some numerical experiments.

The idea of exploiting an interface condition such as
(1.9) for computational purposes seems to have been first
used by Hiiber [10] in connection with the one-phase Stefan
problem (see also [7]).

We remark on the introduction of the vanishing viscosity
e . If € were zero, the continuous analog of (1.11)-
(1.15) would be overspecified. The artificial viscosity e
thus seems to stabilize our finite difference scheme. More
specifically, the presence of the € allows us to derive a
lower bound for sz (in the sense of distributions). This
in turn yields a uniform modulus of semicontinuity for vi
and via the interface condition, for 52 . It is this semi-

continuity which is crucial in proving the convergence of

the approximate interface curves, as well as in estimating
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the rate of convergence.

We briefly comment on related, at our knowledge available
results. In [9] Graveleau and Jamet obtained solutions of
the porous medium equation and related equations by employ-
ing a difference scheme similar to ours. However their
scheme is applied in all of {t 2 0} so that approximate
interfaces are not computed. Moreover numerical evidence
indicates that the supports of their approximate solutions
spread out too rapidly in time. Thus computing the inter-
faces by ''shock capturing' seems to be unsatisfactory.

While this paper was in preparation, Tomoeda and Mimura
[13] informed us that they have recently derived an inter-
face tracking algorithm for the porous medium equation.
Numerical evidence suggests that the approximate interfaces
computed by their scheme are accuracte, but they are unable
to prove this result.

In addition their scheme is somewhat complicated to
implement, since it involves solving Rieman problems for the
Burgers equation at each mesh point. Both their scheme and
ours suffer from the parabolic stability condition
At = o[(ax)%] .

The paper is organized as follows. Section 2 contains
the derivation of basic estimates. Specifically we prove
the finite difference analog of the following facts, which

are known to hold for the exact solution v of (1.6)-(1.7):
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(1.17) 0 Kv<M

(1.18) “vxlw,ST < Yo (see [2])

(1.19) Vit - vt S Clegyet) (M2 (see [8,12D) |
Vex 2 ° m"lln.<b1 % and

(1.20)
W (08, v, (-, o €& (see [5]) .

In Section 3 we demonstrate the convergence of the
approximate solutions and interfaces to the correct ones
by making use of various compactness arguments.

The error estimates are proved in Sections 4 and 5, {

Finally in Section 6 we present and discuss the results
of several numerical experiments.

Throughout the paper we make the convention that C
shall denote a generic positive constant depending only on

m, M, Yo and some specified time T .
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2. Basic Estimates

We begin the analysis by establishing maximum principles

. for vﬂ and for the discrete space derivative
n_n
W = Yk k-1
k Ax *

We assume throughout that the initial function v satisfies
assumptions [Al] and [AZ], and that the mesh parameters ¢

and B satisfy [A3] and [A4].

Lemma 2.1 The bounds

. (2.1) 0 <v{<‘<m
and
(2.2) Iwal <Y

hold for all k and all n 2 0 .

Proof. The results hold for n = 0 by hypothesis,
Proceeding by induction on n , we rewrite the last term

in the difference equation (1.16) as

£ p-+aENON

A A dut A 2t 4
‘Yil * lrl

.

K §

PP IE WP WP W W TONE WAE \RE W G S ]




n n n n
mAt W1 Wk-1 Y Vk+1"Vk-1 )
m-1 2 2AX *

Rearranging, (1.16) thus becomes

v£+1 = [1 - ZmB(vﬁ + s)]vﬁ
n m BAXx n n n
(2.3) + [mB(Vk + €) + 'm—_l' Y (Wk+1 + Wk)]vk+1

+ ImB(vp + €) - mip BgE Gng W IVR,

Using the induction hypotheses (2.1) and (2.2), we have

that the coefficients of va and v2+1 in this expression

are bounded below by

YOAx
1 - 2mR(M + €) and mB(e - Tm-I) )

respectively. Since these quantities are nonnegative by

[A3] and [A4], (2.3) shows that v£+1 is a convex combination

of vﬂ , Vﬂ-l , and v2+1 . This proves that 0 < v§+1 <M
for k € K(n+l1) . When k > K(n+l) , these bounds follow
from (1.14).

We prove (2.2) first for k < K(n+l) . Rewrite (1.16)
as follows:

n n
¢ W +w
(2.4) v2+1 = vﬁ + mB(vﬁ + c)(w£+1 - wE)Ax + m?l ( k+% k)2

. Ca e e e e B L SN R Lo . . .. .
LI Sl TR S S JRP Y Sy WY WL AP NPT A S Vi Py Fr PRI W AP IPULIP S WO YOar WY TP S ) _— P S
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akb

where

bk+b
e (A s A

n+l

We subtract from this the equation corresponding to V-1

and divide by Ax . Using the discrete product rule

a, +a
- _k “k+1 -
k ~ 3-1Pk-1 = — 7 (b - b _})

k-1

we obtain
n. _n
Vi +V
W2+1 = W;: + mB (__k.T]E;l_ + €) sz
n n
w -w
+ mMBAX w; (_5117_3;1)
n n, n
w +2wW, +W
m k+1 k k-1 n n
+ m—‘l'_ B[x ( 3 )(wk“l - wk-l) ’
so that
n..n
vV, +V
w£+1 = wrl: + mB(_L.Z.L_]_‘ + €) AWE
(2.5)
m BAx n n n n n
taeT T (Wrep Y 2mwg Wy ) (g mwelp)
This equation has the form
(2.6) Wt (L zaad e (@ bWl ¢ (@ - bl




S n _n
¢ vtV
N (2.7) a=ms (XK1 ¢
E! and
B
(2.8) b=_M BAx B, om® o+ Wt )
. a-T T (Wga k ¥ Yk-1 .

By the induction hypotheses (2.1) and (2.2), a and b satisfy

(2.9) mBe € a € mR(M + €)

o
and ‘
BY nAX
m(m+1) 0
(2.10) bl <€ =T > .

Thus, using the mesh conditions [A3] and [A4], we obtain
immediately that 1 - 2a and a - Ibl are nonnegative.
Hence (2.6) shows that w2+1 is a convex combination of
wﬁ , w2_1 , and w2+1 , and so satisfies the bound (2.2).

Finally, we prove (2.2) for X, near the interface.

Thus let k = K(n+l) and let sﬂ - X » SO that
n - _ N
Wiel = vk/sﬁ .

Using the difference equation (1.16), we then have that




r'.‘.'.‘r'. R T R W T e W W W T T ey W T~ =~ "= w w = -
............. * o Se T te. . PO - LI P Lo - . . e T

n+l
n+1 Vk 1 n n n n
-w = = (viy + mB(v, + €)(w - W, ) AX
k+1 S+l Sh+l k k k+1 k
wh +w£ )
mAt k+1 2 n
mATLGR, 2+ ( RN RO
' Wi
- k+1 _ _m_.n
- TS (Sﬂ m-T Yk+1 20
n+l
n n
3w, , ., tw
n m n At k+1 Tk
+ (wk+1 w) T—[Bx(v +€) - = (—F)] .
nt+l
But
mAt Wi

Sn+l = Sp T meT Yk+1

by (1.15). Therefore

n+1 I | n
(2.11) k"'l wk"‘l + C(W = wk+l) »
where
st ety
(2.12) c = g7 [BAx(vy *+ €) - o7 (—5—)] .

n+l

Again, using the induction hypotheses (2.1) and (2.2), we
obtain that
A yAx

X
2.13 meAX (e - € c <mB(M + ¢ + )
(2.13) 51 7T =T

the mesh conditions [A3] and [A4] then imply that 0 €c <1 .

o NTRAY TR - P Wiy " R, T T -~ e s e -t - e e T e - . .
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n+l
k+1

w£+1 and wﬁ , and so satisfies the bound (2.2).
n+l
Yk

i and 0 , and so again satisfies (2.2).//

Thus (2.11) shows that w is a convex combination of

Finally, when k > K(n+l) + 1 , is between

n+
wk+

.
k ’
condition (1.15), shows that

The bound (2.2) for together with the interface

n+l n
|— | < Cc .

Since At = O(sz) by [A4]}, it follows that Sh < 20x + O(sz)
(see (1.10) and (1.12)). Combining this with (1.13), we

therefore have
(2.14) Ax £ Sh € 3Ax

for small Ax . Actually, any upper bound on sn/Ax will
suffice for our purposes. However, for the sake of simplicity,
we shall make use of (2.14) without mentioning the precise
conditions an Ax which justify it.

In the next lemma we establish a lower bound for the

second spatial differences of vﬁ . This lower bound will

provide a uniform modulus of semicontinuity for wE and,
n+l n
via (1.15), for 5—7ﬁ;5— as well. This semicontinuity will

be crucial later for obtaining error estimates for the approx-

inate interfaces.

.............
......
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Lemma 2.2: Define K by

_ Then the bound

n n n..n
Avk ~ vk+1-2vk+vk_1
(2.15) 7 = vi

>-t_K-
Ax Ax n

ﬂ- holds for all kX and all n > 0 .

Proof: Denote the variable in question by Zi . That is,

n n n
M Mk Yk Yk
k sz Ax

X KAXx
Now, if 0 < tn < 776 , then

n n
2n) < Ml il 2o ok

4
>
”
B>
»
t

*

We proceed by induction, assuming that (2.15) holds

at time level n , and that

.

F

o Kax

:,:_. (2.16) tn+1 > 2—Y— .
ﬁ 0

F

The first case is that in which k <€ K(n+l) - 1 , so that both
w2+1 and wﬁii satisfy (2.5). Subtracting and dividing by

Ax , we thus obtain

v ~ey T v
SARETITVETE T

-
v~

LIS

v

. e -

oYL IV IR TR L. -

) ) . - - g - - . . .

(LF S VEVEFEVEVE W W AT et olhons s o e B b a2 a4 y ) el
A A B XL " . Al A m_s.-m -
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n n n
n+l _ .n Vke1* VitV n
n n n n
Vel V-1, AWge1tAWE
+ mB(—5x ) ( vE )
_m_ BAx n n n n
*og g Wep t e G, +w) + Vi1 Gy ~%y)
m fBAx
A S CARE S AC S A D Gl e e ) -

We rewrite the third term on the right as

T ey O Gyt )

and the last term on the right as

m At
AT T (a1t 2mip+Zy ) (2, 1*220+2 1) .

The result is that

22 = (1-2p)2] 4 (pra)Zl,, ¢ (pe@)ZD )
(2.17)
LI GRG0
where

n n,..n
v +2v, +v
p=mp(Rtl ok kel oy
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mTI Béx [w2+2 * (4m'1)(wi+1 * WE) * w£-1] ’

and

_ m At
r*s1 % -

n+l

We shall show that Zk in (2.17) is an increasing

n

function of each of the quantities Zﬁ ’ Zk-l

n
, and Zk+1 .

Using Lemma 2.1, we have

2y
~— = (1-2p) + r[(zm+z)(zﬁ+1+z§_l) + 8m 22]

aLk
= (1-2p) + = [Qm2) (W, - W ;) + (6m-2) () =w) ]
21 - 2mR(M + €) - ﬁgT é%% - 16my,
- _ m
=1 2mB[M + ¢ + =T YOAx]
>0

by [A4]. And similarly,

n+l
BZk

azEtl

n n n
=ptq+2r [Z),,* (mD)Z + 2y 4]

2r.. n n n n
t 3xWiez - Wk * MW - W]

o
I+
L0
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m_ BAX | 2m At
>me - mo1 g 8™ - mT max - (4mA)Yg

=m8 [e - 7%%;%7 Yohx]

v
o

by [A3].

Thus Z§+1 is bounded below by the right side of (2.17)

with 22 , Zﬁ_l , and Z§+1 replaced by -K/tn . That is,

zn+1 > - X, m(m+1) K.2

- (=)" At
k tn m-1 tn
- . K [1 m(m+1) K
tn m- n
-.Xnpn1, K n _ __K
tn n tn n+1 tn+1

as required.

There are several cases to consider in order to establish

the bound (2.15) for Zn+1 when Xy is near gn+1

k . Now,

when Z£+1 20, (2.15) is automatically satisfied. We may
therefore assume that Zz+1 < 0 ; that is, that
n+l _n+l
Vk#1'Vk-1  n+l
2 -k L]
But this shows that v£+1 is positive and that v£+1 is not

computed from the linear interpolation (1.14), Therefore it

--'._LL;‘,'.“.H'-'-" AP Vi U USSP A CEUP AT W W YRS I LU WS S PRI R PR - vt




k € K(n+1) . Since we already dealt with the

must be that

case that k € K(n+1) - 1 , we may therefore assume that
k = K(n+l) .
Thus w2+1 and wazi satisfy (2.6) and (2.11) respec-

tively. These equations may be rewritten

n+l _ n n
wk+1 = wk+1 - chZk
and
n+l _ . n n _ - n
wy =W ¢+ (a+b) Ax Zk (a-b)Ax Zk-l ,

where a, b, and c¢ are as in (2.7), (2.8), and (2.12).

Subtracting and dividing by Ax , we thus obtain

(2.18) 22*1 = (1-a-b-c)2] + (a-b)Z}_, .

We checked in the proof of Lemma 2.1 that a-Iibl 2 0 .
And, using (2.9), (2.10), and (2.13), we have that

BYOAx yoAx

m(mt1) - WM+ € + —)

m-1 2

l-a=b=c 21 - mB(M + ¢) -

=1 - 2mB[M + € + Zf%E%T YOAx] ,

which is nonnegative by [A4].

................
..........
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Finally, using (2.9), (2.10), (2.13), and (2.14), we

have that the sum of the coefficients in (2.18) is

Y, AX
1-2b-c € 1 + E%g;%l BYpAX - %g (e - L) .

Using the definition of K , this bound may be rewritten as

BY AX
0 1 mpBe
1+ —x— D 3my! - 5

And using condition [A3], we then find that

28vpbx 2Yg at

1-2b-c €1 - —x— = 1 -~ >

On the other hand, we have from (2.16) that thel 2 KAx/ZYO ,

so that

Therefore

1 n
1-2b-c €1 - n_-;T -n_"'T ’

and (2.18) shows that

g+l 5 K n_ _ _ K .,
k t, n+l thel




Py
RS 'I ‘l »

Remark: The constant K

(m-1)/m(m+1) is the best possible
as it can be verified on the Barenblatt-Pattle solution [6,16]

(see also [5]).

We can improve the bound (2.15) by imposing additional

regularity conditions on Vo -

Corollary 2.3: a) If Vo is a concave function, then

P
<
~ S

(2.19)

C

%
N
<

for all k and all n 20 .
b) If there is a constant C0 such that
vo(x+h)-2v0(x)+v0(x-h)

(2.20) 2 > - C,

holds for all x and all h > 0 , then

>
<
=3

(2.21)

>
%
\Y
'
@]
(=]

for all k and all n =2 0 ,

Proof: We showed in the proof of Lemma 2,2 that, in
all cases, AVII:*I/AX2 is an increasing function of AvE/Ax2
and Avatl/sz . The bounds (2.19) and (2.21) then follow

easily from (2.17) and (2.18). //
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Next, we obtain a bound for the discrete time derivative

near the interface,

Lemma 2.4: There is a constant C such that

n+l n
Vk  "Vk

X3 <C

holds for n 2 0 and k > K(n+l1) .

Proof: We use the symbol O (*) to denote dependence on
mesh parameters. Let k > K = K(m+1) and let sﬁ = cn - Xg oo

Then from (1.14) we have that

n+l _n n+l
v -

n
kK 'k _ _L_[C Xk one1l 5 7% M
At At Vs 7 K S
vn+1_vn. ;n+1-x Cn—x
K K 1 k k n
=0(l) [———+ = ( ) v, ] .
At At sn+1 s; K

The first term on the right can be estimated by using the

difference equation, (1.16): i

n+l _n
MR

At

n n
w -W
= m(vg+e) “E%%FJK + 0(1) = 0(1)

since v2+e = 0(Ax) . And the second term on the right is

[£7+0(8t)-x; 1s] - [57+0(AT) ] (2" -x;)

O(Ax) ¢ S;\—sn*lAt = 0(1) . //
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Lemmas 2.2 and 2.4, together with the difference equa-
tion (1.11), now imply the following bound for the discrete

time derivative.

Corollary 2.5: There is a constant C such that

l‘k+1"k 1
—_— 2 - o
(2.22) X3 C(1 + &)

holds for all %k and all n > 0 .,

In the next lemma we use the one-sided bounds (2.15)

2 and

and (2.22) to derive L1 estimates for Avg/Ax
n+l n
"

At ‘

Lemma 2.6: a) For a given T > 0 there is a constant C

such that
Avy VE+1‘V£ 1
b Ax L, | —=——=|8x € C(1 + =)
k{22 * “k|T &t t

holds for t, <£T.
b) If the initial function Vo satisfies the hypothesis

(2.20), then

n+l n

. - o . - N "
Py o - . < - . . -
" NN NS VNI G S G S R G G L Y O S PR P PN LT al s oa .

s
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Lemma 2.7: Let T > 0 be given.

26

¢c) And if Vo both satisfies (2.20) and is concave, then

Avn Vn+1_vn
k k k <C
] - Y
sz At
Proof: From Lemma 2.2 we have that
n n
AVk < Avk . EE
AXx Ax tn

We multiply by Ax and sum over k . Since VE is zero

outside an interval of length C(1 + tn) , we obtain that
Avi c
X Ax € = (1 + t)
k sz tn n

The other bounds in a) and b) are proved similarly. <c)
follows from Corollary 2.3, the difference equation (1.11),
and Lemma 2.4, //

In the final lemma of this section we establish the

Hélder continuity in time of the sequence {vﬁ} .

Then there is a constant

C such that the inequality

i M 1/2 -1 1/2
R I QLI L S I G el N TS

holds for t and tm

n in [0,T] and for all k .

PP S S S
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Proof: Fix a point (x, ,t_) and let t >t be
k0 n, n

given., Let Q be the rectangle

N
X

Q= [x, - p,x, + p] x [t ,t ]
k ’ k0 no’ nl

'ty

]

where p 1is a multiple of Ax to be chosen later. And

define the quantities

n
H = max lvﬁ -vkol s
n0<n<n1 0 0
(2.23) c = 2m(M + €) + ﬁgT YoP s
and ol = V. vno - . B [(x,-x )2 + c(t -t )]
I S M L A c(tp=ty )1 -

We shall show that uﬁ <0 for (x.,t) €Q by induction
on n. When n=ny and |x-xk| < p, we have, using
Lemma 2.1, that

n n

n 0 0
Uk < Vi - ka = YpP <0 .

For the induction step we consider the following

three cases:

ka~xk01 =p , k> K(n+l) , and lxk-xkol < p with k €K(m+l) .

e 2 B Al Sl ol o) oa o
-t o o W]

DeCsUN LI o

et e -
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In the first of these, we have that

(] ,
n+l n+l _n+l n+1l 0
Y Uk < (vk -V ) + (vk Vi ) - Yo H ,
3 0 0 0
1
i. which is nonpositive by (2.2) and the definition of H .

In the second case, we have v2+1 < Y0Sn+1 €3 YobX , sO that

ﬁ. U;+1 £3 YOAX - Yof ,

which is nonpositive provided that

.- (2.24) p 23 Ax .,
a For the third case, we employ the linearized difference
ﬁi operator L , defined, for a given sequence Zﬁ , by

n+l .n n

s " - m(v® o+ e) AZy

k it k sz

n n n n
. m (Vk+1'Vk-1)(Zk+1‘zk-1)

m-1 ZAx 28X '

Applying L to Uﬁ and using (1.11), we find that

;F n n

:a +1 _H n m k1l k-1, Xkl Fk-1

E: LUz = ;3 [-c + 2m(vk+e) + m-l( X" ) ( 3 - xko)]
- so that, by (2.1) and (2.2),

4

g
-
b .
b
.
b .
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LU?+1 < f% [-c + 2m(M+e) + ﬁgT YOp]

by the definition of ¢ , (2.23).
On the other hand, we can rewrite the inequality

n+l

LUk € 0 in the form

U?+1 < [1 - 2mB(vy+e) JUR

* MB(VR*e) - 7 5T (o1 V1) 1%
+ mB(vire) *+ § i (VpapVi-1)1%p -

The coefficients of U? on the right hand side of this
inequality are exactly the same as those of v? in equation

(2.3). And we showed in the proof of Lemma 2.1 that these

n+l
k

is a convex combination of Uﬁ_l ’ U2 , and U£+1 , and

coefficients are nonnegative. We therefore have that U

so is nonpositive by the induction hypothesis.

Setting k = kO in the result Uﬂ <€ 0, we thus obtain

that

L P Y W P W DS U. EY  Ul SR S R ) PP SR
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where s =t -t . In a similar way, we can establish
M i n, n
the same inequality for Vit Vo o Taking the maximum over

0 0

n e [no,nl] , we thus obtain

(2.25) H< ygo + g% s .

We shall choose p so that E% € 1/2 . Specifically,
0

p should satisfy

Py + 3Ax € p € Pq + 4Ax R

where P1 is the larger root of the quadratic equation

p2 - 2cs = p2 - ﬁ?& YgSP - 4m(M+¢e)s

"
o
L]

An easy computation shows that Py = O(s + 51/2) = 0(51/2)

for t. €T. And p > 3Ax , as required by (2.24). Since

cs 1
== <1/2 , (2.25) becomes
p

1 < 2vgp < 2yy(py *+ 48X) < csl/? 4 axy .
In particular,
n n
1 "o 1/2
v, -v, " | € C(]t_ -t_ | + AX) N/
ko ko n; ng

We remark that the proof of the above lemma is the discrete

version of an argument given by Kruzkov, [12] and Gilding [8].
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3. Convergence of the Approximate Solutions

Let h denote a pair (Ax,At) whose elements satisfy
the mesh conditions [A3] and [A4]. We define approximate
interface curves t +— c?(t) and t — c?(t) by piecewise
linear interpolation: for t €t<t

n
h n m VK
chee) = of e gy R (e

where c? ’ vﬂ , and Sn are as in Sections 1 and 2; and

. . h . n
similarly for Cg(t) . The estimate (2.2) for VK(n)/sn then
shows that the nets {c?(t)} and {c?(t)} are uniformly

Lipschitz and uniformly bounded in finite time.

t We construct approxi-
tn+1<. mate solutions vh(x,t) in
n an analogous way, as follows.
0
tn 4 k_ If Tﬂ and S: are the
triangles in Fig. 3.1, then
> - X
Xk Xk+1
Fig. 3.1
h n n
vi(x,t) = vy + (x-xk)wk+1 + (t-tn)o;+1 , (x,t) € T2 H
and

h
vi(x,t) = vﬁji»f (x-Xpy)Wpeq + (=t )0}, (x,t) € S} .
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Here

n+l n
wn = and 01’1 = u
k Ax k At )
It follows immediately from Lemmas 2.1, 2.2, 2.6, and 2.7

that the functions vh satisfy

(3.1) 0 < vlix,t) €M,
h
Vv
(3.2) X < 'YO a.e., ’
2.h h
(3.3) %;%r(x,t) , %%?(x,t) for t > 0 are
X

finite measures in R with mass

3 h 1
/ ;S |——v <c+dy .
R |oxt| R 13T t
and
(3.4) VB (x,t+s) - vi(x,t)] <c(T) s1/2 , 0 <t <tes<T.

Throughout this section we fix a time T and a rectangle
Q = [a,b} x [0,T] , where [a,b] 1is large enough to contain
the supports of vh(-,t) for all h and all t € [0,T] .
(See (1.15) and (2.2) )

h h

The properties of L s Gp oo and vh described above

insure that, for every sequence hj tending to 0 subject

PP T Gl St ot W S LIRS Sy S Vg Sor T vou S
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to the mesh conditions [A3] and [A4], there is a subsequence,
which we index simply by h , for which

vh — v* uniformly in Q ,

h . .
52,C£ — ¢¥,¢} uniformly in [0,T] ,

and vz —_ V; in LZ(Q) , weakly .

Our goal in this section will be to prove that v¥*,
c¥ , and cz coincide with the exact solution and inter-
face curves for the problem (1.8). Actually, the convergence
of vh . c? , and 52 also follows from the error bounds
which we shall derive later in Sections 4 and 5. However,
the arguments of the present section are much more direct.
Moreover, we obtain here the convergence of v2 in Lp(Q)
for all p < » , As a byproduct of these arguments, we
thus obtain in addition a constructive proof of the exis-
tence and regularity properties of the solution of (1.8).

We begin by showing that vz + w* strongly in Lp(Q)

and that, in fact, w* = v; .

Lemma 3.1: For any t > 0 the net {vi(-,t)} is pre-

compact in Ll[a,b] .
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Proof: The proof consists of estimating the Ll
difference between vi(-,t) and its spatial translates,

Given t > 0 , choose n so that t €t < thiel

Then when h 1is sufficiently small, 0 < t-At < t, -

If we take p = £Ax where £ 1is a positive integer,

then it is easy to see that

h h |
R 'Vx(X+p’t) - VX(X,t)ldx
(3.5)

n +1 +1
< C(Zk|w§+£-wk|Ax + Zk|w£+£ ﬁ [ AX) .

The first of these sums is bounded by

|AvT |

_%_AxgtAt

by Lemma 2.2. Dealing with the second sum in (3.5) in a

similar way, we find that

(3.6) |v (x+p,t)-v (x t)|dx <€ __Z_
R
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holds when p/Ax 1is a positive integer.
h h .
When o, < Ax , |vx(x+pl,t)-vx(x,t)| will be zero
except when x is within Pl of the nonhorizontal sides

of the triangles Ti and Sﬁ . Thus

J IV};(xwl.t)-VQ(x,t)ldx

N < Coy (3 Wyl + my RIIETTD

Y
But this expression is K% times the right side of (3.5)

with £ taken to be 1 . The computations we made above

therefore show that

cpy

f fv (x+p1,t) vy (x t) |dx € —= rYNa .

Combining this with (3.6), we see that (3.6) now holds for

all p > 0 . The conclusion of the lemma now follows from [1]. //

Lemma 3.1 thus shows that {V:} has strong Ll 1imit

points. In the next lemma, we prove that these limit points

can be identified as the derivatives of limit points of {vh} .

— Lemma 3.2: Let vh denote a sequence of approximate solu-
?f tions which converge to v* wuniformly in Q . Then

o h .

L vy * v; in Lp(Q) for every p € [1,=) .

‘q

Bt Al A o
[ IR
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Proof: By Lemma 3.1, every subsequence of {vi(-,t)}
has a subsequence which converges in LIOR) . Thus let
]
{h'} < {h} and let v}; (+,t) converge to a function

g(x) in Ll(R) . We shall show that £g(x) = v;(',t) a.e.

First, if ¥ € H)(a,b) , then

{f b 1. he

:‘ S [Vx (x,t)-wx(x,t)][v (X,t)"‘P(X,t)] =0 .
L a

L

e We take

f! v = n¢ + (1-n)v*(-,t)

(-

- . . . 1 . ht

2 in this relation, where ¢ E,Ho(a,b) . Since v - v¥*

]
uniformly and vz (+,t) » & in L1 we obtain, by letting

h -+ 0, that
b

S o[g-no, - (1-n)vE(+,t)1[¢-v*(-,t)]dx = 0 .
a

3

Dividing by n and letting n - 0 , we then find that

2 [E-vE(e,t)1[¢-v*(-,t)]dx = 0
& for all ¢ € Hé(a,b) . This shows that £ = v*(+,t) a.e.
Ef Thus every subsequence of {vh(-,t)} has in turn a sub-
E? sequence which converges to v*(-,t) in LlﬂR) . And
ﬁ% therefore the entire sequence converges to v;(-,t) in
-
4
b e
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9
g
1 . . h
. L"(R) . Finally, since Hvx“m < Yo for every h , we
a have that
| Whovs i < o) I IVR(e ) -va (e e h, ode]L/P
Vx"Vx'p,q S “P 0o X x. ? 1,R
+ 0

by the dominated convergence theorem. //

We remark that the proof of Lemma 3.2 is an adaptation
of an argument given by Minty in [14].

The next theorem contains the main results of this section.

Theorem 3.3: Let v , Tp » and T, denote the exact solu-

Lt T Lo 10e A e A o
s A PO Sk
e . o .

- PR e ot aT

tion and interface curves for the problem (1.8). Then

h

vy o TR
LA [
LT L L.

(3.7) v — v uniformly in Q ,
- (3.8) Vi— v in P@ , peo
-
< and
B h h
?ﬁ (3.9) Tpsly — Lpsly uniformly in [0,T] .
-
ﬁ! We prove (3.7) by showing that limits of converging
fﬁ sequences from {vh} satisfy the weak equation (1.8), and
? so agree with its solution v , which is known to be unique.
ES Thus 1let {vh} denote such a sequence and let vh + vk

e .,

NN an pag "
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uniformly in Q , so that vt(-,t) -+ v;(-,t) in LI(R)

|
4
4
4

for every t > 0 . It will be sufficient to show that

T,
S VE(x,)0(x,) |7 dx +
R 1

(3.10)
T
fz S [-v*¢_+mviv*¢_ + m(m-2) (v*)2¢]dxdt =0
T, R t X7X m-1 X

for all C~ functions ¢ satisfying (1.4) and for

0 <T;, <T, T,

1 2
Given such a function ¢ , let ¢E = ¢(xk,tn) and

consider the quantity

N,-1 vn+1-vn Avn vn -vn
2 k__'k n, Vb om o, Vk#1Vk-1,2,.n
(3.11) £n=N1 {Zkb——zz——-- m(vk+e,Ax2 7= ) ]¢k&x}At .

for appropriate N1 and N2 . Now, the expression in brackets

vanishes for K(n+1) < k € K(n+l1) . And for other

S n+l n

s Yk Vk

X values of k , we have that —xF - 0(1) by Lemma 2.4,
o n n n

r Av w -w

[ and (Vﬁ*e)z;§ = o)=L X - 0(1) by Lemma 2.1. Thus the
P.' . .

- quantity (3.11) approaches 0 as h -~ 0 .

13 On the other hand, we can sum by parts in (3.11) and

-8

J! match the resulting terms with the corresponding integrals

12 in (3.10). We shall carry out the details only for the most
%f complicated term. Using Lemma 2.2, we may rewrite the second
;! two terms in (3.11) as follows:

k"l

fa

-

L:_:
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n - n wn +wn
n "kl ™k . 1 et 2 00,
k Ax m-1 2 k

-m II [(v:+e)¢

n n ,n n
(v +s)¢kf(vk_1+e)¢k_1

R 1 n.2.n
=m I [wkt = } o~ = (wk) ¢k]AxAt + 0(Ax)
(3.12) n _n n .n
=m I | n {ZE:ZEZL ™y D te) fk:fk:l} - _l;.( n)2 n]A At + 0(Ax)
m I T et M Ax a1 (Vi G lox x

m(m~2)

= TX el

n,2.n nn, ,~n
(wk) ¢kAxAt + mLE vkwk¢x(xk,tn)AxAt + 0(Ax)
for some §2 e_[xk_l,xk] . We shall show that the second
sum here converges to the second term on the right in (3.10).

. . h _.n n n-1
First note that, since vx(x,t) = w, on TkLJSk ,

WEAxAt = [f vi(x,t)dxdt .

n n-1
Ty U Sy

And, since ¢ is smooth and vh is Lipschitz in x and

H6lder continuous in t ,

nn ~n _
vkwk¢x(xk,tn)AxAt =

Is vhv2¢xdxdt + 0(Ax+At1/2)AxAt .

n n-1
TkuSk

Therefore the second sum in (3.12) is

T2 h h
J S mv v_¢_dxdt + 0(Ax) ,
T, R XX

which approaches

PRI G LD WP P S GI R IOR WO WU T U Ry Sy . DR Y S TN W ; . Ao dheandl ol
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T2
ky%
'{ é mv vx¢xdxdt
1
as h > 0, since vh > vt in L° and vz - v; in L1 >

with Vh and vi uniformly bounded. The other terms in
(3.11) are handled in a similar manner. Thus v* satisfies
(3.10) for all appropriate test functions, and so coincides
with the unique solution v of the problem (1.8).

The proof of (3.7) is based upon the following techni-
cal lemma, which will be used again in Section 4 for the
derivation of error bounds for the approximate interface

curves,

Lemma 3.4: Let {Cg} be a subsequence such that cg - c;
uniformly in f{0,T}] as h > 0 . Then for every t > 0 and
for any positive numbers ¢§ and n ,

t+n 2

(3.13) IV - 6,945 > L (& [ea(een) - cA(D)] - .(_I"i 5

'd;*
for 0 <t , t+ns<T,., Moreover, if TH; exists and is
positive at t , then there are positive numbers 60 and C

such that
(3.14) v(c;(t) - 8,t) 2 C8

holds for 0 € & < 60 .
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Proof: Let p, q , and N denote the largest integers

wi in é6/4x , n/At , and t/At respectively. Then
*
N+q-1 n N+q-1 n K(n) n
p=N K(®)-P ney KW j=K(n)-p+1 3

using Lemma 2.2 and the definition (1.15) of g? , we have

2 that
h K(n) . K(n) 0 K(n-1) av,
- -z w, Ax = I [-WK(n) + z -3 Ax]Ax
j=K(n)-p+1 ] j=K(n)-p+1 £=j Ax
h h
u s =1 K)(:n) Cr(tml)-cr(tn) __1 pix 1ax
- Z m At ml ot
- j=K(n)-p+l n
N e b
! g (t_ )=t (t ) 2
3 m=1l °r' nt+l’ °r''n _1 (pAx)
- el At PAX = o1 t_ 1ax
ii Substituting this into (3.15) and discarding the nonnegative
l; term Vﬁ(n) , Wwe obtain
N+g-1 2
n m-1 h h (pax) (qAt)
- (3.16) nEN VR(n)-p At > — {[;r(tn+q) - cr(cN)]pr - (m+1)tN }o.
3 4
-
L-.
- Now (3.13) follows by letting h + 0 and using the uniform
.
g convergence of vh and c: .
;- dc*
;? 1f 'HT'(t) > 0 , then there is a positive number o
. such that
F(

.

—

e ]
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* > %
Cr(t*ﬂ) Cr(t) + pn

for small n ., For such n , then, (3.13) shows that

t+n

x - m'l 6 - 6 n
{ v(zi(s) - 8,s)ds > — [ » en —TF ] -
o
L
F Dividing by n and letting n » 0 , we thus obtain that
‘ (eact) - 6,0 > LS 8T
o vity 7 T Vi m+1)t

)§

\%
~
|5
t
[
ke

if assos(i"%li‘l .l

Proof of 3.9: Let {62} denote any subsequence con-
verging to a curve c; uniformly in [0,T]. We shall show

that c;(t) = cr(t) for every T . First observe that,

since vh(x,t) 0 for x 2 c?(t) , Vv(x,t) must be O

for x > z3(t)’; thus ¢z _(t) < cx(t) .

Now suppose that ¢ < c* on (t,t+n) with cr(i) = c;(f) .
Then since Cr is increasing, there must be a time

t € (t,t+n) at which dg*/dt exists and is positive. But

then (3.14) shows that v(c?(t) - 8,t) 1is positive for small

§ . However, this implies that cr(t) 2> c;(t) , which is

a contradiction. Therefore there is no maximal time t for
which c;(t) = cr(t) for 0 €t €t . And since t. and z*
agree at t = 0 , they agree for all t . Similar argu-

ments hold for g?(t) . M

L ""v‘]',- ,.v‘-'-'_ﬁ:';v‘v.lv"l"-.. 1.-.1:?'.“" l.n{ a.(“_‘r.u_l.l'.i'r
B A B L f Lt N e Nt
cole S e ERCRERTRRER
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4, Error Bounds for the Approximate Solution and Interface Curves

In this section we prove the following theorem.

Theorem 4.1: Fix T > 0 . Then there is a constant C such
that, for 0 €t €T,
=
o p+
(4.1) VP (e,t)-v(-,0)I_ o < Cnin [(A—"-lit‘lEA—xl) ,t1/24x)
V4
and 1 1
(4.2) 1Pty -2(t) | € ¢ ™1 (ax*|10gax|)2P*)
where ¢ is either tg OF Cr . Here
1 ’ l <m«<2
a -
1
n-T ’ 2 €m
and
%;% ’ l <m«<2
p =

m+1 , 2 €n .
We remark that, if the initial data Vo satisfies the

hypothesis (2.20), then the term |logAx| may be omitted

from the bounds in (4.1) and (4.2).

PO S T Sy
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The proof of Theorem 4.1 will be given in a sequence

of lemmas. First we introduce the weak truncation error
associated with an approximate solution. If ¢ 1is a smooth
function satisfying (1.4), define

t

(4.3) J(v,¢,t1,t2) = [ f[vt¢ + mvvxcbx +
t1IR

mm-2) ,241dxdt .
m- X

Thus v is a weak solution of (1.6) if and only if

J(v,¢,t1,t2) = 0 for all ¢ and all intervals (tl,tz) .

The weak truncation error associated with the approximate

solution vh is then the functional J(vh+e,-,t1,t2) . We

have the following estimate for J .

Lemma 4.2: Let f satisfy (1.4) and assume that f and

£ are in ngllf;l[O,T] with f(x,T) = 0 for all xt. Then
if ¢ = (VMee)™ T g,
(4.4) |JvPee, 6,8, T)| <CULm ax*|logs|
where
WEW = WEN_ & WEN_+ WE N .

The proof of Lemma 4.2 is quite technical and lengthy.

We therefore postpone it to Section 5.
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Next, we define functions u and uh by the relations

1 1
u = vﬁ:T and uh = (vh+e)ﬁrr .

In the following lemma we exploit the above estimate for

J to obtain a bound for uh - u in Lm+1 .

Lemma 4.3: There is a constant C such that

Tb T
g7 [uleu™laxde + spr(@M™ - W™ at)lax <
0 a RO
(4.5)
m
<C [L(u,uh) AxallogAx|+(Ax)ﬁ:T]
where

T
L(u,u® = 1) u™ + Ilf((uh)m-um)xdrll
t

«Rx[0,T] «Rx[0,T] °

Proof: Let ¢ and f be as in Lemma 4.2. Then after

integrating by parts in (4.3) and substituting, we obtain

h T h hym
J(v '+e,9,8,T) = (m-1) J [ [utf + (u )xfx]dxdt
§ R
: (4.6) = (m-1) [-/ ul(x,8)£(x,8)dx
ol R
é; -? ;oaPe - aMy™E ydxde]
5 R t XX *




75 46

We shall replace 6 in these integrals by 0 . The
3! resulting error in the second integral on the right will be
. no more than CIHlfll§ ., And to estimate the change in the
first integral, we use the fact that uh is Holder con-

tinuous in t , which may be established as follows. When

E  m € (1,2] we have from Lemma 2.7 that

- h h h h

L‘ 'u (x:tz)'u (X,tl)l < C |V (x’tz)'v (x»tl)l
o 1/2

.":~ < C Itz-tll .

And when m > 2 |

‘uh(xstz)'uh(xstl) ‘m-l < ‘“h(x,tz)m-l‘uh(xatl)m-l‘

h 1
= V) VGt ) < e [yt |12

Thus ul is Holder continuous in t with exponent a/2 ,

and
|7l (x,8) £(x,6) -ul (x,0) £(x,0)1dx| <c mens /2
R
We thus obtain from (4.6) and Lemma 4.2 that
T

ruP(x,0)£(x,0)dx + f s (e, - (M) ME Jdxdt
R 0 R x X

< CI £ (8x*]10gs] + 6%/2)
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Now subtract from this the weak form of the original equation

for u, (1.3), and take § = sz . The result is that

[h-wg, - (MH™-u™ £ Jdxdt

(=R |

s
R
(4.7)

< cmemax® |logax| .

We have used here the fact that

lu(e,0)-ul(-,0)1 _ < cax*

oo’R

which follows directly from the definitions of u and uh

and from the Lipschitz continuity of Vo .

In (4.7) choose

m

t
£(x,t) = f [(uM)™-u™](x,s)ds + (T-t)e L
I

It is clear that f satisfies (1.4) and the conditions of

Lemma 4.2. Observe also that

T T
froPwg, = s lew (™ot Ty
0 R 0 R
T b
>/ Iuh-ulm+1 c ™,
0 a

and that

o e a2 &' w oaA.x s xS .m .+ _m .2 A A e . & _a
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(MH™u™ f = 12 M u™ . (x,s)ds]?

[ 2 ot T x' ’
so that

T h m_ u™ 1 T hym m 2

S 5 [(u) ] f -y SI/((u)  -u )x(x,s)ds] dx

0 R R O
Now (4.5) follows by making these substitutions into (4.7). //

The next lemma contains the corresponding estimate for

. h
the error in v

Lemma 4.4:

There is a constant C

such that

TDO
I s lvh-v\pdxdt < C[L(u,uh)Axa1logAx| + Ax*™)
0 a
where L 1is as in Lemma 4.3 and o and p are as in
Theorem 4.1.
Proof: When m 2 2 , we have
m-2
h m-1
|-yl = ™™ < menpM™ T uPyl
And if 1 <m< 2, then
1 1 1
| (Prey-v|™T < ey T m-T) o pyhoy

.........
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Since € = 0(Ax) , we have in either case that

lvh-vlp < C(Iuh-ulm+1 + axP)

/N

The conclusion then follows from Lemma 4. 3.

In order to deduce the L” bound for v-vh from the

above LP bound, we shall require the following interpola-
tion inequality.
Let =z

Lemma 4.5: be a continuous function on ST = Rx{0,T]

with support z(-+,t) = [(a,b] for t € [0,T] . Assume also
that
a) Zx €EL (ST) ’
and
b) z,(+,t) € L'®) with
Co
Ilzt(-,t:)lll"z < T -

Let p € [1,) and £ > 0 be given. Then there is a con-
stant C independent of £ such that the inequality
c n
hz(s,t) Iy g § — F(2) "Z"p,ST
(£t)P*3
holds for 0 < t < T-£ . Here
4’_ I LS a2 o o P .~ o P A A B . A .%o .m Ve e a . T
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1 2p -1 1
F(z) = Nz | T sup lz(-,s)IP*T « Colz P+ p*3
@,Sp  t<s<T p,R ¥ S,

Proof: For t > 0 we have

12(x, ) |P*1 < (p+1) 1 [2(x,t) [Plz (x,t) |dx
R
(4.8)

P
< Clzd, o ¥(t)

where

y(t) = “Z(',t)"p’]R .

Differentiating the definition of y(t) , we obtain
p-1,d . p-1 .
(4.9) y(t) |a%| < Cliz( R M2, (580 5

Combining (4.8) and (4.9), we thus obtain

p(p-1) -1
y(0P 1) < cye) P 1z P Wz (01 o,

T

so that
-1 -1
%TT d p+1 .
(4.10) y(t) |a%| < C "Zx"m,sT Iz, ( ,t)"l’R .

- - . . . - - . NN - \l
b PSP P A8 o &' .S . u 82 s &’n’a. B Ao . a2s‘s 2. s m_m .m
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Now let x(t) be the cut-off function
x(t) =
1-7[t-(T-8)] , T-L<t<T

Then for q >1 and 0 <t € T-£ , we have

t
y(£)? = 0%

T
<a s o xly ¢ XI5

T
<% ! o yTHED

7 f y IHXI)

Now choose

q=P—(PP'ﬁ§)_>1

and use (4.10) to estimate the second term in the above

integrand. The result is that

Nz (+,s)l
T t

p(p+3) T 2p p-1
2 y(e) P <9[f y(t)Pde ] sup [y(s)PL + Iz uffé
o t<s<T ’
v
=
:

Attt L PO

IJJ *
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Using hypothesis b), this may be rewritten as

p(pt3) c 2p p-l
1 p p+l p+l
4.11 ) P o<z [ sup lz(+,s)IP™L + ¢ liz |
( ) y Lt Plp,s.t Ser p,R T F0 %x w,sT]

Now by (4.8) we have that
(4.12) Nz (e,t)h R < Cliz_
The resﬁlt then follows by substituting (4.11) into (4.12). //

We can now prove the first half of Theorem 4.1 by applying
the interpolation inequality of Lemma 4.5 to the LP error

bound in Lemma 4.4 as follows.

Proof of (4.1): It is clear that vh-v satisfies the
first hypothesis of Lemma 4.5, In addition, hypothesis b)
is satisfied because of (3.3) and the results of [5].
(Alternatively, we can observe that the conclusion of Lemma
4.5 remains valid for limits of functions which satisfy
hypotheses a) and b) uniformly, And v 1is such a function
by the results of Section 3.) Replacing T-£ and T by
T and T+1 respectively, we therefore obtain that

C h —gg

he, . -viP
v ( ,t)‘V( ,t)“m'R < N v V“p,S'

P T

> o oA o At a . e W S S VY D LAY W - Py WL L R ! > i PP N YNy W

P,




where S% = Rx[0,T+1] and p € (1,») . But if we choose p
as in the statement of Theorem 4.1, then Lemma 4.4 shows that

h P a
v =-vl € CAx |logAx .
vV =V P,S | g I

'
T

Therefore

-
a pP*+3
WP (-0 -v (e, 00, g < C (AX1logdx], .

On the other hand, the H6lder continuity of vh and v 1in
time shows that

1/2

(e, t)-vie, 0 o < ¢ (tl/? « ax)

R
for any t . The estimate (4.1) follows from these last

two inequalities. //

Next, we deduce the bound (4.2) for the error in the
approximate interfaces from the above bound (4.1) for the
error in vh . Again we drop the subscripts and denote

h h
Cr and Ly by ¢ and ¢ .

Proof of (4.2): First we refine the result in Lemma 3.4,

Divide (3.13) by n and let n » 0 . The result is that

PP R M PP WL P U SO S . U P GRS I IPT URL DA U A Uy
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2
(4.13) v(e(t)-y,t) > B2 [} it -yl aee.

A similar bound holds for vh : taking q =1 1in (3.10),

we have that

Rn-j > S LG e - 4 2 x

Since V! is Lipschitz in x and Holder continuous in t ,

and since ch is piecewise linear, we can conclude that

(4.14) vi(ch (t) y,t) = = m M)y - T’XTT"] - Cax a.e.

Now let {vl,vz} = {v,vh} and let t; and ¢z, be the
corresponding interface curves. Assume that, at time t ,
0 < cz(t)-cl(t) =y . Then we have, using either (4.13) or
(4.14), that

VP (e, 0=V (e, 000, > 1 (vymvy) (5 (8),8))|

= Vz(Cl(t),t) = Vz(Cz(t)'y’t)
(4.15)

A N il . v oo L A e ’I
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Now let F(t) = [cz(t)-cl(t)]z and let E(t) be the

bound in (4.1) for Iv(+,t)-v(+,t)l_ (4.15) then shows

R °
that

B(t) - e F(V) SE(D)

where we have subsumed the CAx term into E(t) . Integrating,

we thus obtain that, for any &6 > 0 ,

2 2 2

- T -
(4.16) Fe) < e™1 s ™I pesy o ;s ™T prgyas) .
5

Now, since
F(&) = [c"(8)-2(8)1°
JEHORROIRRHORIO I
< Cs ,

the first term on the right of (4.16) approaches 0 as &6 - 0 .

In addition, the integrand in the second term of (4.16) is

bounded by
- 1 .1 1
m+1 p+3 P*3

b AP WA AP P Lalalalalia s w s a’-" a4 s allaaa’y o aliea- - -
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A short computation shows that the exponent of s here is
greater than -1 , so that this term is integrable on (0,t] .

We may therefore conclude that

1 1
1Pz = B2 < o™ T (x| 10gax TR Ly

™ .y
BN o .
RIS RR A

Yoy vy
ettt
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5. Estimate for the weak truncation error

This section is devoted to the proof of Lemma 4.2. Since
the arguments are technically involved, even though simple,
we begin by listing a few facts to which we will refer system-
atically. In the estimates to follow we will use repeatedly
the bounds established in Section 2 without specific mention,
Let Tﬁ and Sﬁ be the triangles in Fig. 3.1, and let

vh be the piecewise linear interpolated of vz introduced

in Section 3., In Tk , vh can be written in any one of the
following equivalent forms

vﬁ + w£+1(x-xk) + oi+1(t-tn)

h _ n n n
(5.1) v (x,t) = J Vel * wk+1(x-xk+1) + °k+1(t'tn)

n+l n n
LVl * Wka1 (X7 Xpq) *+ 0pq (B-t )

and in SE it can be written in any one of the equivalent forms

.
n

Vi * wk+1(x xk) + ok(t t )

vh(x,t) = 1 v2+1 + wk*l(x X ) + o) (t tn*l)

n+l n
L Vel * 1+1(x Xee1) * ottt

R et T Lo . A -
PSP Ao oo o Bl dinsiac it IR, WL e P PR ST WSS
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Let ¢ € Hl(ST) be a test function satisfying (1.4),
denote with ¢h the piecewise linear interpolation of the

values ¢£ = ¢(xk,tn) and set

In Tﬁ , ¢h can be written in any of the equivalent forms

i
Ok * Vkep(X-xp) + OF, (-t )

(5.3) oP(x,t) = { oR, ¢ U (xexq) ¢ o (tet)

n+1 n n
. ¢k+1 * lpk+1(x"xk+1) * ¢k+1(t'tn+1)

and in Sﬁ
o0+ W0 (xexp) + op(t-t )

(5.4) o, t) = { o ¢ W xexg) ¢ oB(e-t )

. ¢£:i * wﬁ*l(x_xk+1) * ¢ﬁ(t-tn+1)

k" Remark From (5.1)-(5.2) it follows that vh can be written

as the value of vh at any one of the corners of T2 (Sﬂ

respectively), plus terms of the order of Ax . An analogous

fact holds for ¢h .

-----------------
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5.1 The basic identity

Consider the quantity

(5.5) JoP v e,00,8,T) =

h m(m-2) (vh 2.h

= [f {V2¢h + m(v +e)v2¢2 Ml x) ¢ }dxdt

St,8

where & is a fixed positive number. We assume for simplicity
that T = (N+1)At and ¢ = n,st for two positive integers

n, < N , and calculate the various parts of (5.5) as follows.

N

(i) 3 = 1 iohaxdr =z z {1y vioPaxde + ss vPoPaxdr)
S n, Z n n
T,8 0 T S
’ k k
N n,n N 1, n,n+l n. n 2
= T ck¢kAxAt + I I Flckwk+1 - okwk](Ax) At .
noz n0 z

(ii) Jy,=m I (M) viol + ov!yZehy axdr =
- ’
X
E : =mn /I vi[(vh+e)¢h]xdxdr -
- S5t,s
S
Y N n h ..h ntl,, h ..h
- = 3z £ {fs wk+1[(v +€) ¢ ]xdxdt + fJ wk+1[(v +€) ¢ ]xdxdt} .
- n. Z n n
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On T? we have
[(WPeerohy = (Deedl, |+ Wl ol
+ W£+1w2+1[(X-xk) +o(xex )]+
n

n n n
+ (03 1Vke1 * Wre1®Rer) (E7T) .

Therefore

¥ W£*1[(vh+s)¢h]xdxdr = %[(v2+e)¢2+1 + w§+1¢§+1]AxAt +
k

1 n n n n n 2
Y E0ke1Vke1 T Vke1®ke1lWkap 2X(ODT

By direct calculation

[Av]}
n n n n n _ n k .n
wk+1[(vk+€)q’k+1 + wk+1¢k+1] = '(Vk+€)z2;;7 ¢ *
n n n n
Yire1 ™Yk n ¢k+1'¢k

+

n n n n 2 _
Vite) =7 k1 ¥ KW i (W) "0k T

[AV]]
= -(v1+e) (Ax)g ¢2 * E; {(Vi+1+€)wi+1¢i+1 B (v1+e)wi¢1} *

This implies that

. . . . . R SRS S T . N
R Wl Y UL P - I VP PUE WL WK VPSS YT, W RPN g G W Sy WU WO S S
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&
S I L Sffw [(v+e)d ] _dxdt =
e k+l X
no z Tn
:’ k
i N [Av)"
1 n k ,n
o = - I I (v, +e) ¢, AxAt +
o z ng z K (ax)* X
?{ « 1 g z n[onwn-*wn¢n]Ax(At)2
[ )% Yk T YKk .
. no Z
L
. Analogous calculations on Sa give

N n+l,, h, \ h

I v rs wk+1[(v +e)¢ ]xdxdt =

n, Z on

k
n+l
.1 g r (v leg) [Av]y on*1
z n, 2 k (Ax)z k
-} g £ whtl [cnwm’l + wn"1<l>n]Ax(At)2
§ 7 k#1 Vk'k+l k+17k
0

Substituting these calculations in the expression of J2

we obtain

(vl g

T m(v?+e) — & -
ng+l z k (Ax) k

N
(ii)! J, = z
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; n [Av]no n [Av]N+1
- DAt s Ax{ (v 0+e) k ¢ 0., (vN 1+e) k ¢N+1}
Zz Z k (Ax)z k k (Ax)z k

N
n, n.n n.n 2
I I "k(°k"k + wk¢k)Ax(At) -

m
3 n, z
0

N
m n+l, n n+l n+l.n 2
-3 lf § wk+1(°kwk+1 + wk+1¢k)Ax(At) .
0

We finally transform the remaining integral in J(vh+e,¢h,6,T) .

(iii) Jg= - B s (vMZe" axar =
- St,s
- ’
» m N n .2.h n+1.2.h
N = - 200 I LSS (W, )% dxdt + 55 (W) 0 dxdt) .
g no y 4 Tn Sl'l
k k
I. Using (5.3)-(5.4), by standard calculations we obtain
o | N
e 2. n
2 Je = - —— I I (W) axat +
3 m-In0+1 z k k
N
b oz A ax) At -
3(m-1) n0+1 7 ( k k
- lg s (D2 - whHZelaxan? -
6(m-1) n. Z k k k
0
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n n
- T ot 2 3La) 200+ i h%eph

n

n
. %[(wko)zwko N+1.,2 N+1

+ (wk ) 2% 1}Ax .

We rewrite the first summand in J3 as follows

n n n n
w +w w +w
W2l - (LI . (? - (e

and combine the expressions of Ji , 1=1,2,3 so obtained,

as parts of J(vh+e,¢h,6,T) to deduce the following basic
identity
(5.6) Jvhee,o,6,T) =
N Vn+1-vn [av]? vl e
k k n k m , k+1 'k-1,2, n
= I z{ - m(vy, +¢) - ( ) “ ¢, AxAt
ngtl Z —i K g2 w1 2k e
n
+ At I 0k°¢EAx -
y/A
n
N1
n [av].© n [av]
- l.-lz\—t L {(vk0+s) —-—kz— ¢k0 + (v§+1+€) ———152— ¢§+1}Ax +
4 (ax) (Ax)
+ 2X g z [on n+l on n]AxAt -
5 kVYke1 " %k Yk

nOZ

— s Ll Al L
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mAt n+l, n n+l n+l.n
- T Z ; wk+1[0kwk+1 + wk+1¢k]AXAt +
i)
+ mAx r; r M 2yPaxat +
3(m-1) ng 7 k k
+ MAt g z wn[onwn + wnén]AxAt -
6 n, 7 k'*"k7k k'k
mAt ? 5 n+1)2 n)2]¢nAxAt -
“Em-n F L Lo - (wd 1oy
0
n n n n
mAt 0.2, o N+1, 2 N+1 1 0,2 0 N+1,2 N+1
'Z(Tl—)'g [ )0+ Gep D70, 1 =310 D g+ (o ) Ty 11ax +
N [Av]n
mAx k n n n
+ T I — [3wy, + w 1o, AxAt =
{(m-T) ny+l z (8x) k k1!
10
= ¥ H. .
i=1 !
From now on we will select test functions ¢ of the form
2-m
o = (Vh+€)m-I f , m> 1

where f satisfies (1.4). We will estimate the Hi ,

i=1,2,...,10 in (5.6) in terms of f , fx , .
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notational simplicity set
"f’fx'ft"w,sT = If,f ,f
and
I = BE0 + WE N + NE .

We start by making elementary estimates of ¢ and its first

derivatives in terms of f

Denoting by ¢h the piecewise linear interpolated of

PN SR SIS S 3 (BGPTSR Sy S T W Wy

¢ and recalling that € is of the order of Ax we have
C Ifi if 1 <m<«<€2
h
(5.7) he 1 _ < 2em
cuen(ax)™Y if m>2 .
Also
n_.n 2-m 2-m
n _ O 9% - 21 n, \m-1 .n n m-1 _
(a) e = —ax— = ax (e f - (gt fg) s
2-m 2-m 2-m (n_.n
. 1 n, .m-1 n m=-1,,.n n m-1 'k k-1
ax e ™" = (vt 7Tl + (v e B
L Z-m
2- - =
< |ﬁ:?|(v2+e)m lw2|ufu + (v2_1+e)m el

e bia aian 1




¢ — —
k k 2~ i -1 -
(b) o e < 2 o)™ loglHEl + i)™ hig 1,
where
n _ . n.,.n
viz = min {Vk ’Vk-l}
vr~l = min {vn+1 vy
k k Yk
From (a)-(b) we deduce
c(v™e) ligr + ¢ 1£ if 1 <m
K
n
(5-8) |'~Pk| < 2-m
crevie) Lign + ufxu](Ax)’“'I , if m > 2
: k
=
a covire) o |nEr + g if 1<m
n
clovire) Lol un + nftn](Ax)m‘I if mo> 2
5.2 An auxiliary lemma

2-m

2-m

Lemma 5.1:

For all test functions ¢ of the form

2-m
m-1 £

3

¢ = (vh+€)

the following estimate holds

''''''' “'_n'*g‘-'-“"'t;a-- PRI O WA GOy Y - : D e o

N
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15 (vPee, o™, 8,T)| < ClEN(ax)®|log §|

where

- a = min {l;ﬁi'l'} .

Proof: We estimate the Hi on the right side of (5.6)
ﬁ. separately. At points where the difference equation (1.11)
holds, the summand in Hl vanishes, and by virtue of Lemma
B 2.4, the sum extended over the remaining (n,k) 1is of the
Ei order of Ax .

E; Therefore
[Hy| € C(ax)hgt_ < cufm(ax)® .
b We have also easily

[Hy| + [Hg| < cuem(ax)® .

In estimating H4 we only consider the term whose

summand is °2w£:i . The estimate for the term whose sum-

mand is ckwﬁ is analogous, and in fact simpler.
We have
N N

n n+l _ n n+l
AX L L 0k¢k+1AXAt = AX L L okwk+1AxAt

n, Ny [k<R(n+1)] U [k>K(n+1)]

T A e e e e e e S .. . . . .
‘:‘ P MRS R W VT IPU Wy GOy YR PG U LIPS AP G W S U W S




........................

68

N
+ AX I % ozw']::%AxAt = M)

Ty R(n+1)<k<K(n+1)

(2)

+ K L]

(1)

As for « , using Lemma 2.4 and (5.8)

IK(I)I < c(8x)% max|y®| < cuEm(ax)® .
n,k k

We estimate K(Z) by using the difference equation (1.11).
N [Av'ln Wi
K(z) = Ax I P [m(vg+e) ;g + ml( k+; wk)z]wn+iAxAt
n, - (ax)% ™ ket
0 K(n+l)<k<K(m+l)
N [Av]D
n k), n+l
< Axlf ) I m(vy +e) 22—37 [ Wyeqlax0E +
0 K(n+1)<k<K(n+1) x
+ Ax ;‘ 5 m (wk+1+wk 2,041 ne] =
o AT ) Va1 bx0t) =
0 K(n+1)<k<K(n+1)

(2)

= K
a

(2)

+Kb .

Estimate the summand in ng) as follows

[AVIR] 141 | (VIR
max (Vi +e) Veeql € CHE () ——| +
K X)Z| ko1 * | (8%)“|

PRI TP UL AP ol G SUE W S ..

..........

PULIP LR VP, P YL S, PISE W S WG JPE. WP AP AP U U il S Y Sy P L, W, PP G gy T
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v£+e a [Av]ﬁ
+C€—[—)llfI!(Ax) — .
v2+ +e (ax)
k
Now observe that vﬁ = vﬂv +w__ Ax = VE:} + o _ At + w__ Ax ,
k+1 k+1 k*1 1231 k+1
vﬂ-VETi n VETE-VE;;
where WE:1 = —xx and Of:1 = — 5 - By the
estimates in Section 2
W v < cax
k+1 k+1
and therefore
n
Vy +€
k Ax
( ) €1+ C—<C .
‘ v lie ¢
k+1
Consequently for K;z) we have
N [Av]n
|K§2)| < cmem(ax)® z —-—J§ AXAt
: n, Z |(4x)
0
By Lemma 2.6
P"-‘:
% N A} N .
p
E—. n, (ax) n, n
(>

< c(1+]log §|) ,

so that

L) 5 T
. A NS R
DAY Sol 0L

R P~ A

. LT P et < o S . s b
Aot d, P PP WP Ty —t ol ala b ’ . S PSRN RV, S WIS WL AN SRSIPIIY "Wy S Sty W3 S -0V I 3 b AN, .. % S




[ g9 CRARC R

() < connan® 10gs] .

We estimate lngz)l by performing a discrete integration by parts 1

n n ntl otl

N w, W ¢, -9
m kt+l 2, "ktl Tk
EA":_ 5 ( 2“)( ——) axar| <
0 R(n+l)<k<K(n+1)
N [Av]n
<coaxz r |—%l|el* ] axat + C axlon <
n, Z (Ax)

< C WEW(ax)® |logs| .
Combining these estimates we obtain
|H,| <cC EW(ax)® | logs| .
By similar calculations involving the use of Lemma 2.6 we deduce

[Ho| + [H,| <C Wem (ax)* |logs| .

7l
In estimating H6 we first integrate by parts (discrete
integration) and use the techniques above to obtain

|[H. | < CWEm(ax)® |1og s| -

6l




---------
.................

71

Analogous techniques give the desired estimate for ”8 , Hg ,

H The proof is complete.

10 °

Corollary 5.2. If -L < Voxx € 0, for some positive

constant L , then

[Jovhee,ol,6,T)| < CHEM(AX)® 3 W5 >0 .

5.3. Proof of Lemma 4.2

Since J(VM+e,0,8,T) = J(vlee,0-00,58,T) + J(vi+e, oM, 5,T)
and the last term has been estimated in Lemma 5.1, we have
only to estimate J(vh+e,¢-¢h,6,T) . To this end we will need

the following preliminary fact

Lemma 5.3. There exists a constant C independent of n ,

k , 4x, ¢ such that

(axent) ™! s (oP-gydxdt < cmgm(ax)® [+ (o)),
T}

where
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Remark An analogous statement holds for Sﬁ .

Proof of Lemma 5.3:

Sf (oM-g)dxdt = sf (63-0)dxdt +
n

n
Ty Ty

+ /S [wrl:(x-xk) + ¢2(t-tn)]dxdt - I(l) + I(2) )
™

k
For I(Z) , using (5.8)-(5.9) we have
113) ) < comen(an)® [1+(WRee) Laxar .
Estimating I(l) s

1) = rr (%0 0x,t )1 + [0(x,t)-0(x,t )] }dxdt <

n
Tk
< {u¢xu n Ax + u¢tu n At} AxAt ,
°°’Tk m’Tk
and the desired estimate follows from (5.8)-(5.9).
3
%! Corollary 5.4: For all n, k , if 3? = max vh
» 0
- ~n k
: (vi*e)

h o
—xXFE fg (¢ -¢)dxdt < C £l AX)

Ty

e S S L A Do b B S e B Bt A




a
AxAt ff (¢ -¢)dxdt < C lfll (Ax) .

k

Remark: Corollary 5.4 holds if Tﬁ is replaced by Sﬁ .

We are now in the position to estimate J(vh+e,¢-¢h,6,T) .

51,8

+

(m(v ) —1-( ) )(¢ ¢ )}dxdt =

n m WE+1+W

= g z [0 - ( )2] IS (¢-¢h)dxdt +
0 Sk
N wh el
o 1oz (o, - B (K2 KL2y pp poMaxde +
n, 2 $
R (w4l Yl W) ST (9-0M)dxde +
3 kel k2! ka1 W42
n, y 4
N
ede p G R fro(e-oM)dxdt
n, ¥ 4 Sf

N r1u

em 15 (M) VM 0m6M) ¢ (om0 Tdxar -
T,S i

...............

od

(5.10) J(Mee,0-00,6,1) = 15 (WRie-o™ + mvPre) oM e-oM )




7 K e W W W b,
.......................................

Estimate of |P1| + IPZI

™M 2

wt]l +wn
_ n m +] "k 2 _,h

1) K(n+l)<kXK(n+l) Sy

n n
- N W
+ 2 L [0} - ﬁ(——k%ﬁ)zl I7 (4-4™ dxdt =

Mo [k<K(n+1)] U [k>K(n+1) ] Sy

For Pi* by the estimates in Section 2 and Corollary 5.4

we obtain easily
|P3*| <cingn (ax)* .

In estimating P%* we use the difference equation (1.11).

1
| | N [Av]% (vﬁ+e) | h B
P*| € Cr I AXAt { ——7r I/ (¢-¢)dxdt
1 ng z (Ax)z AxAt Sﬂ

< C mEm(ax)® | log 8| .

The estimate of |P2| is analogous.

.................




Estimate of |P3| + [Pyl

leg] + |p,| SCI o [—|teatiziie | 17 (0-¢Maxde|} .
n, Z | (Ax) SEUTﬁ

By Corollary 5.4 and Lemma 2.6
IPgl + |P,| < C Wew (ax)* |1og 8| .

Estimate of PS :

Po=mnzI I {/f ((vee)viio-o!y. + (vM)2(o-0")]dxde +
X X X
n Y 4 n

e 15 1Moo+ M2 (e-oM1axat) = 1) 4 (D)
Sn

4
N

We estimate Q(l) by performing an integration by parts

in X over each T2 .

NP AP NI A N L LR ettt e o s e o oe - . . .. L -
& P 2 2 PRI 2 ST ST G Tl S A Sl G IS, W WL DR N N N U . s
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" ( )
5 e R TS L |
-t
(t ,xq) +A§ (t-t ) (t ,xy,.)
n’"k XAt n n’ kel

We have
t X
o+l k+1
11 (Prevle-gh axdt = 1 7 (o) oD (0™ axae -
T} “a xpriE(e-t )
t
n+l
_ h. .. h,. .h
= tf (vi+e) v, (¢-¢7) (t,xp,,)dt -
n
t
n+l
h h h Ax
- g' (vi+e) v, (¢-¢7) (t,xp + g5 (-t ))dt -
n
- 15 P e-eMyaxar .
n
Tx
Therefore
t
N n+l
M =mz ozt s Pl 0-0M) (t,xg, Dt -
n, Z t
0 n
t
n+l
h n h Ax
-‘J (vi+e)wp, 1 (0-07) (t,xy + ¢ (-t ))dt} .

n
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: Similar calculations for Q(Z) give

. (2) N fmel oy e h

S QY = mz I {-f (v+e)wp,j(e-07)(t,x)dt +
n0 z t,

" atl oy el Bx
' + 0 (viee)w 1 (e-0T) (t,xy + 7F (t-t ))dt} .

th

.
..
[
I‘.

For all k€z and t € [t ,t ]

| (o-o™) (t,x) | < CMEN(ax)*(Jop|+1)x

so that

t
N n+l
oz 1 (Mee)nl(e-o™ (t,x0dt <
no z tn

o N n
< C £ (AXx) T I (1+|ok|)AxAt <
n0 y 4

< C WEM(ax)® |log 8| .

Consequently

101+ | < cmem(ax)® |1log 8] +

‘AT I . - . - . . .. . R
2 : “a DRI ST P APV PP AP Wl Wl GM S V. s B e Bt arthoated
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N n+l
n+l n h h AX
FmE LS W T e) (6560 (Eyxy ¢ gE(E-E,))d
0 n

Now from calculations analogous to the ones leading to (5.8)-

(5.9), we have in Tﬁ (and in Sﬁ )
| ey (o-o | < (Peed o I ax + o N _ a) <
X n t n
Q’Tk N’Tk

< cvey1+ Mee)Tt + (vee) ) men (ax)®
i

< C Wem(ax)® .

Moreover
w2+1 ) wa _1 [V2+1_V; ) viti-Vﬁle
X Y3
ISR R S B
Hence
1R+ P | < ¢ mem(ax)® fog 8] +c Mel (ax)® : : |of | axat

R

< C MEM(Ax)® | 1ogs| .

This completes the proof of Lemma 4.2,
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6. Numerical Results

In this section we discuss briefly the results of our
numerical experiments with the scheme (1.11). All computa-
tions were carried out on the CDC 6600 at Indiana University.
In each case we specify only the value of Ax wused. The
values of € and At were always chosen to be the smallest
and largest convenient values, respectively, consistent with
the mesh conditions [A3] and [A4].

Not surprisingly, the condition [A4] on At/sz is
in fact necessary in practice. But the condition [A3] on ¢
is probably overly restrictive. For example, for the speci-
fic problems discussed below, [A3] requires that e > 13.8Ax
which is not "small" when, say, Ax = .05 . Indeed, for the
second problem discussed below, we found that the accuracy
increased noticeably as ¢ decreased. A practical (but

not theoretically justified) alternative to [A3] is the con-

dition
(6.1) e > z_c";nLlU Yobx .

Such a condition is sufficient for the bounds (2.1) and

h
(2.2) for vh and A4 to remain in effect. (The more
0X

stringent condition [A3] was required only for bound (2.15)

ath B

for 7;1? For the specific problems discussed below,
X

condition (6.1) requires only that € 2 ,58Ax .,

’
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For purposes of comparison, we used the Barenblatt-
Pattle solution v , which for m = 2 is defined by

(see [16]),

el - G xS e
(6.2) v(x,t) =
0 ’ |X| > C(t) ’
where

c(r) = [zee+n 13,

First, we applied the scheme (1.11) taking vg = v(xk,O) ’

52 = -z(0) , and cg = ¢z(0) . The computations were per-

formed with three different sets of mesh parameters. Com-

paring the exact and computed solutions, at t = % , we

found the following:

bx Ic(%)-cﬁ(%)l ";lﬂv(-,%)-vh(l»%)"m,n

.1 .0202 .00666

.05 .0106 . 00340 )
S _ _ v
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Quite clearly, the observed errors in both ch and
vh are O0(Ax) . This is significantly better than the

rates predicted by Theorem 4.1, which are O(lelogAxll/lz)

and 0(|AxlogAx|1/6) for ch and V! respectively. These
discrepancies are explained by the fact that the solution
(6.2) has derivatives of all orders which are uniformly
bounded on its support, whereas the bounds (4.1) and (4.2)
were derived under the minimal smoothness conditions which
all solutions are known to satisfy. Another difference
between the observed and theoretical results is that the
observed rate of convergence for ch is the same as that

for vh , whereas Theorem 4,1 predicts roughly that

h,1/2

lC-Chl = O(dv-v'1_"") . However, the computation (4.15)

shows that, as long as l;(t)-ch(t)] is small,

le(t)-ch ()| € =S— wv(e,t)-vR (e, 00

g, (t)

+C Ax .

SR

Thus when the interfaces are known to be moving with speeds

bounded away from 0 , the rate of convergence of ch will

in fact coincide with that of vh .

In the second example we took the same initial func-

tion vy as before, but now with ;2 = -3 and cg =3,

Thus v is neither concave nor continuously differentiable

on [cg ,cgl . The results were as follows:
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A

. x| el | we, e, g
. B
N .1 .1107 .06905
S R
.05 .1073 .06697
.025 B . 1055 I .995_9'2_ ]

We are uncertain as to whether meaningful comparisons
can be made between these data and (4.1) and (4.2). Never-
theless, it is clear that, at least qualitatively, Theorem
4,1 gives the correct result: in the absence of smoothness,
the convergence may be quite slow.

The scheme (1.11) is thus seen to have two shortcomings.

The first is that the parabolic stability condition [A4]
makes it impractical to apply the scheme with small values

of Ax . This difficulty can probably be overcome by em-

R e fee )
’ R B AL
. el s T

ploying instead a suitable implicit variant of (1.11). We

intend to discuss such a scheme elsewhere. The other short-

I 2R A A Al
e
. . e

[y

Frery

coming of the present method is the unsatisfactory rate of
convergence. While this phenomenon is partly due to the
weakness of the exact solutions themselves, it may be

possible to effect some improvement by a more sophisticated

o A8 0w o e 4
14 A P

ot . e l. [ .

- i * '.-‘14\ "ll %y .

treatment near the interfaces,

g\ %2 Gt o
Fe e e
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DDV
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